LESSON 11.7 Skills Practice

Name ______ Date _____

More Than Meets the Eye Transformations of Quadratic Functions

Vocabulary

Write a definition for each term in your own words.

- 1. vertical dilation
- 2. dilation factor

Problem Set

Describe the transformation performed on each function g(x) to result in d(x).

1.
$$g(x) = x^2$$

$$d(x) = x^2 - 5$$

2.
$$g(x) = x^2$$

$$d(x)=x^2+2$$

The graph of g(x) is translated down 5 units.

3.
$$g(x) = 3x^2$$

$$d(x) = 3x^2 + 6$$

4.
$$g(x) = \frac{1}{2}x^2$$

$$d(x)=\frac{1}{2}x^2-1$$

5.
$$g(x) = (x + 2)^2$$

$$d(x) = (x + 2)^2 - 3$$

6.
$$g(x) = -(x-2)^2$$

$$d(x) = -(x - 2)^2 + 5$$

Describe the transformation performed on each function g(x) to result in m(x).

7.
$$g(x) = x^2$$

$$m(x) = (x+4)^2$$

The graph of g(x) is translated left 4 units.

8.
$$g(x) = x^2$$

$$m(x) = (x - 8)^2$$

9. $g(x) = x^2$

$$m(x) = (x+1)^2$$

10.
$$g(x) = x^2 - 7$$

$$m(x) = (x + 2)^2 - 7$$

11. $g(x) = x^2 + 8$

$$m(x) = (x + 3)^2 + 8$$

12.
$$g(x) = x^2 - 6$$

$$m(x) = (x-5)^2 - 6$$

Describe the transformation performed on each function g(x) to result in p(x).

13. $g(x) = x^2$

$$p(x) = -x^2$$

$$p(x) = -x$$

14. $g(x) = x^2$

$$p(x)=(-x)^2$$

The graph of p(x) is a horizontal reflection of the graph of g(x).

15. $q(x) = x^2 + 2$

$$p(x) = -(x^2 + 2)$$

16. $q(x) = x^2 - 5$

$$p(x) = (-x)^2 - 5$$

17. $g(x) = \frac{2}{3}x^2 + 4$

$$p(x) = \frac{2}{3}(-x)^2 + 4$$

18. $g(x) = 5x^2 - 7$

$$p(x) = -(5x^2 - 7)$$

Represent each function n(x) as a vertical dilation of g(x) using coordinate notation.

19. $g(x) = x^2$

$$n(x) = 4x^2$$

$$(x, y) \rightarrow (x, 4y)$$

20. $g(x) = x^2$

$$n(x)=\frac{1}{2}x^2$$

Name ___

Date_

21.
$$g(x) = -x^2$$

$$n(x) = -5x^2$$

22.
$$g(x) = -x^2$$

$$n(x) = -\frac{3}{4}x^2$$

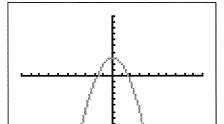
23.
$$g(x) = (x + 1)^2$$

$$n(x) = 2(x+1)^2$$

24.
$$g(x) = (x - 3)^2$$

$$n(x) = \frac{1}{2}(x - 3)^2$$

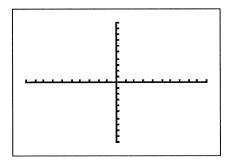
Write an equation in vertex form for a function g(x) with the given characteristics. Sketch a graph of each function g(x).


25. The function g(x) is quadratic.

The function g(x) is continuous.

The graph of g(x) is a horizontal reflection of the graph of $f(x) = x^2$.

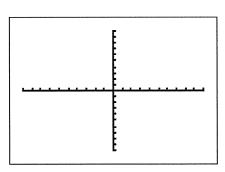
The function g(x) is translated 3 units up from $f(x) = -x^2$.


$$g(x) = -(x - 0)^2 + 3$$

The function g(x) is continuous.

The graph of g(x) is a horizontal reflection of the graph of $f(x) = x^2$.

The function g(x) is translated 2 units down and 5 units left from $f(x) = -x^2$.

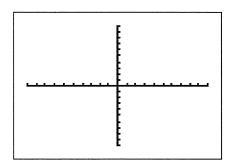


27. The function g(x) is quadratic.

The function g(x) is continuous.

The function g(x) is vertically dilated with a dilation factor of 6.

The function g(x) is translated 1 unit up and 4 units right from $f(x) = 6x^2$.

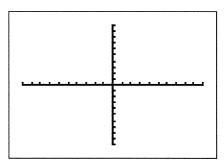

Name_ Date __

28. The function g(x) is quadratic.

The function g(x) is continuous.

The function g(x) is vertically dilated with a dilation factor of $\frac{1}{2}$.

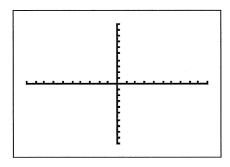
The function g(x) is translated 2 units down and 6 units left from $f(x) = \frac{1}{2}x^2$.


29. The function g(x) is quadratic.

The function g(x) is continuous.

The graph of g(x) is a horizontal reflection of the graph of $f(x) = x^2$.

The function g(x) is vertically dilated with a dilation factor of 3.


The function g(x) is translated 2 units down and 4 units right from $f(x) = -3x^2$.

30. The function g(x) is quadratic.

The function g(x) is continuous.

The function g(x) is vertically dilated with a dilation factor of $\frac{1}{4}$. The function g(x) is translated 3 units up and 2 units left from $f(x) = \frac{1}{4}x^2$.

Describe the transformation(s) necessary to translate the graph of the function $f(x) = x^2$ into the graph of each function g(x).

31.
$$g(x) = x^2 + 7$$

The function g(x) is translated 7 units up from $f(x) = x^2$.

32.
$$g(x) = -x^2 - 4$$

33.
$$g(x) = (x-2)^2 + 8$$

34.
$$g(x) = 4x^2 + 1$$

35.
$$g(x) = \frac{2}{3}(x+4)^2 - 9$$

36.
$$g(x) = -(x-6)^2 + 3$$